Role of nitric oxide in the radiation-induced bystander effect

نویسنده

  • Vasily A. Yakovlev
چکیده

Cells that are not irradiated but are affected by "stress signal factors" released from irradiated cells are called bystander cells. These cells, as well as directly irradiated ones, express DNA damage-related proteins and display excess DNA damage, chromosome aberrations, mutations, and malignant transformation. This phenomenon has been studied widely in the past 20 years, since its first description by Nagasawa and Little in 1992, and is known as the radiation-induced bystander effect (RIBE). Several factors have been identified as playing a role in the bystander response. This review will focus on one of them, nitric oxide (NO), and its role in the stimulation and propagation of RIBE. The hydrophobic properties of NO, which permit its diffusion through the cytoplasm and plasma membranes, allow this signaling molecule to easily spread from irradiated cells to bystander cells without the involvement of gap junction intercellular communication. NO produced in irradiated tissues mediates cellular regulation through posttranslational modification of a number of regulatory proteins. The best studied of these modifications are S-nitrosylation (reversible oxidation of cysteine) and tyrosine nitration. These modifications can up- or down-regulate the functions of many proteins modulating different NO-dependent effects. These NO-dependent effects include the stimulation of genomic instability (GI) and the accumulation of DNA errors in bystander cells without direct DNA damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiation Bystander Effects Mechanism

  Introduction: Radiation Induced Bystander Effect (RIBE) which cause radiation effects in non-irradiated cells, has challenged the principle according to which radiation traversal through the nucleus of a cell is necessary for producing biological responses. What is the mechanism of this phenomenon? To have a better understanding of this rather ambiguous concept substantial number of original ...

متن کامل

The Bystander Effect of Ultraviolet Radiation and Mediators

A bystander effect is biological changes in non-irradiated cells by transmitted signals from irradiated bystander cells, which causes the radiation toxic effects on the adjacent non-irradiated tissues. This phenomenon occurs by agents such as ionizing radiation, ultraviolet radiation (UVR) and chemotherapy. The bystander effect includes biological processes such as damage to DNA, cell death, ch...

متن کامل

The role of dose fractionation in the level of Radiation- Induced Bystander Effect in QU-DB Cells

Introduction: Radiation effects induced in non-irradiated cells are termed radiation- induced bystander effects (RIBE). The present study intends to examine the RIBE response of QU-DB bystander cells to first, second and third radiation fractions and compare their cumulative outcome with an equal, single acute dose.   Materials and Methods: This experimental ...

متن کامل

Mechanism of radiation-induced bystander effects: a unifying model.

The radiation-induced bystander effect represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation, in that extranuclear and extracellular events may also contribute to the final biological consequences of exposure to low doses of radiation. Although radiation-induced bystander effects have been well documented in a variety of biological systems, the me...

متن کامل

The Mechanisms of Radiation-Induced Bystander Effect

The radiation-induced bystander effect is the phenomenon which non-irradiated cells exhibit effects along with their different levels as a result of signals received from nearby irradiated cells. Responses of non-irradiated cells may include changes in process of translation, gene expression, cell proliferation, apoptosis and cells death. These changes are confirmed by results of some In-Vivo s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015